Martentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-α-induced nitric oxide release by human umbilical vein endothelial cells

نویسندگان

  • Jun Wang
  • Wenyi Qian
  • Qing Zhu
  • Jian Chen
  • Fei Huan
  • Rong Gao
  • Hang Xiao
چکیده

Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch, has been demonstrated to block large-conductance Ca(2+)-activated K(+) (BKCa) channels; however, its biological roles are still largely unknown. In the present study, we investigated the pharmacological effects of martentoxin on regulating the production of nitric oxide induced by TNF-α in human umbilical vein endothelial cells (HUVECs). We found that, 1, 10 and 100 µmol/L martentoxin decreased nitric oxide production by HUVECs exposed to 10 ng/mL TNF for 6, 12 and 24 hours. We further demonstrated that martentoxin inhibited the activity of iNOS and retarded the down-regulation of eNOS mRNA induced by TNF-α. Therefore, martentoxin could be a potential therapeutic agent for vascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calycosin and Formononetin Induce Endothelium-Dependent Vasodilation by the Activation of Large-Conductance Ca2+-Activated K+ Channels (BKCa)

Calycosin and formononetin are two structurally similar isoflavonoids that have been shown to induce vasodilation in aorta and conduit arteries, but study of their actions on endothelial functions is lacking. Here, we demonstrated that both isoflavonoids relaxed rat mesenteric resistance arteries in a concentration-dependent manner, which was reduced by endothelial disruption and nitric oxide s...

متن کامل

Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat.

This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in large and small rat mesenteric arteries. Segments of rat supe...

متن کامل

Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS) inhibitor N (ω) -nitro-L-arginine methyl ester (L-NAME), the ne...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Small- and intermediate-conductance Ca -activated K channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells

Sheng J-Z, Braun AP. Smalland intermediate-conductance Ca -activated K channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Am J Physiol Cell Physiol 293: C458–C467, 2007. First published April 25, 2007; doi:10.1152/ajpcell.00036.2007.—The contribution of small-conductance (SKCa) and intermediate-conductance Ca -activated K (IKCa) channels to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013